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The local and integral cha rac t e r i s t i c s  of flat MHD channels are  studied with allowance for 
longitudinal and t r ansve r se  edge effects and heterogenei t ies  in the distributions of conduc-  
t ivity and s t ream velocity. An analysis  is made of the effect of the finite dimensions of the 
insulating inser ts  in the longitudinal edge effect and of the modular const ruct ion of the side 
wall in the t r ansve r se  edge effect on the output p a r a m e t e r s  of MHD channels. The solution 
of the problem is based on reduction of the initial quasi l inear  elliptical equation for  the e lec-  
t r ica l  potential with allowance for Ohm' s law to an integral  equation of the Fredholm type 
relat ive to the cu r ren t  density. 

1. Introduction. The output pa r ame te r s  of conduction magnetohydrodynamic (MHD) instruments  de- 
pend s t rongly on the nature of the distribution of velocity v, conductivity a ,  and external  magnetic field B, 
as well as  on the construct ion of the conducting andinsulat ingwalls  of the MHD channel. The development 
of this dependence is connected with the calculat ion of the e lectr ic  field in the channel for a fixed wall 
geomet ry  and given distributions of v, a ,  and B (kinematic problems).  Such problems usually are  solved 
in a two-dimensional  formulat ion which in many cases  is allowed by the actual th ree-d imens ional  nature of 
the electr ic  field in the channel. 

The construct ion of solutions of two-dimensional  kinematic problems plays an important  role in the 
study of flows with allowance for the MHD interaction, which can be made on the basis  of a modular  solu-  
tion of the gasdynamical  and e lec t rodynamical  problems using i terat ion a lgor i thms [1]. 

The main types of problems cons idered  are  connected with the study of the t r ansve r se  and longitudinal 
edge effects in MHD channels.  A detailed theoret ical  analysis  of these effects with a survey  of the l i t e ra -  
ture  is given in the monographs [2, 3], as well as in [4-7]. These problems usually come down to the solu- 
tion of an ell iptical equation for the e lec t r ica l  potential ~ [2]. Such solutions can be cons t ruc ted  in finite 
analytical form only for par t icu lar  cases ,  for example, when the equation for the potential reduces  to the 
Laplace or  Po isson  equations. This is possible if the magnetic Reynolds number R m is smal l  and the con-  
ductivity of the medium is constant.  The second condition is not satisfied for many problems of prac t ica l  
importance connected with the motion of a conducting gas. 

When the distribution of conductivity and veloci ty is nonuniform the analysis  of MHD flow becomes 
complicated.  In general  it can be based on the use of direct  difference methods [6], although in problems 
with discontinuous boundary conditions the use of these methods requi res  a large number of calculation 
points. 

Effective a lgor i thms for the calculat ion of e lectr ic  fields in the channels of MHD instruments  with 
allowance for  sectioning of the walls and nonuniform distr ibutions of velocity, conductivity of the s t ream,  
and magnetic field can also be const ructed  on the basis  of integral representat ions .  It should be noted that 
the kernels  of the integral  equations can to a ce r ta in  extent "absorb" the discontinuity of the solutions at the 
boundaries between insulators  and conductors ,  which permi t s  a considerable  reduction in the number of 
calculation points compared  with direct  numerical  methods. In addition, in a number of cases  the conver -  
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sion to in tegral  r ep resen ta t ions  fac i l i ta tes  the proof  of uniqueness of the solutions obtained, which often r e p -  
r e sen t s  an independent p rob lem in f in i te-di f ference  methods. Integral  r ep re sen ta t ions  in the solution of 
e lec t rodynamic  p rob l ems  prove  to be quite effect ive in the calculat ion of e lec t r ic  and magnetic  f ields (see 
[7-10], for  example) .  

2. In tegral  Equations for  the E lec t r i ca l  Potent ia l  and Curren t  Density. Let  us cons ider  the two-d i -  
mensional  MtID flow of a conducting medium with a ve loc i ty  v (x, y) and conductivity a(x, y) in an externa l  
magnetic f i e l dB  (x, y), (div B =0, rot  B =0). 

At smal l  magnetic Reynolds numbers  R m and Hall p a r a m e t e r  fl the dis t r ibut ions  of  cu r r en t  density 
j and potential  go in d imens ion less  f o r m  a r e  descr ibed  by the equations 

j = ~ (v  x B - v ~ )  ( 2 . t )  

h(p = (v • B - -  Vq~) V In (r A- B rot v (2.2) 

with the boundary conditions at the e lec t rodes  

(P ---- 4- % (2.3) 

at the grounded conducting parts of the construction 

(p = 0 (2.4) 

and at the insulators 

Oq)/On -- (v • B)n (2.5) 

where  n is the unit no rmal  to the channel sur face .  

Here  the dimensions a re  with r e s pec t  to h, v is with r e spec t  to v0, B to B0, cr to ~0, J to cr0v0B0, and 
go to v0B0h; h and v 0 a r e  half the in te re lec t rode  distance and the ve loc i ty  at the ent rance  to the MttD channel  
ave raged  over  the c r o s s  section,  respec t ive ly ;  B 0 is the max imum induction of the ex te rna l  magnetic  field 
in the channel. The following value is taken as  the cha r ac t e r i s t i c  conductivity: 

v o = h  -~- at x = 0  

The main difficulty in the applicat ion of integral  methods to the solution of equations of the type of 
(2.2) is connected with the const ruct ion of the influence functions de termining  the s t ruc tu re  of the ke rne l s  
of the cor responding  integral  equations.  A sea rch  for  such functions d i rec t ly  for  (2.2) is poss ib le  only in 
individual c a s e s  (for example ,  when (2.2) is reduced to an equation of the type 

At0 -k kqD = ] (x, y), where  k = c o n s t  [7, 8]). 

Broader  poss ib i l i t i es  a r e  connected with in tegral  r ep resen ta t ions  of genera l  e l l ip t ical  equations through the 
Green function for  the Laplace equation (see [11], for  example) .  Such a function is de te rmined  only by the 
boundary conditions of  the p rob lem and does not depend on the dis tr ibut ion of conductivity,  the s t r e a m  ve lo -  
city, o r  the topography of the magnetic field. The Green function can  be cons t ruc ted  for  a wide c l a s s  of 
p rob l ems  with the help of a conformal  t r an s fo rma t ion  of the regions  being cons ide red  onto canonical  regions  
in which Green ' s  function is known. 

The Green function of the mixed boundary p rob lem for  the Laplace equation Ago =0 has the f o r m  [12] 

G (Xo, Yo, x, y) = --  In V (x - xo) 2 + (y --  yo) ~ + g (xo, Yo, x, y) 

where  g (x0, Y0, x~ y) is an analyt ical  function which a s s u r e s  that  the following boundary conditions for  G, 
co r respond ing  to the conditions (2.3)-(2.5), a r e  sat isf ied:  G =0 at the sur face  of the meta l l ic  walls ,  dG/dn = 
0 at the insula tors .  

Applying the second Green equation to (2.2) and using the boundary conditions fo r  go and G, we obtain 

f~q0 (z0, Y0)= I T(~) OG(xO,On,,O, y) d~'-- I [v(7)• B(';)]nG(x0, Yo, T)dT 
r~ r~ (2.6) 

I t  {[v (x, g) X B (x, y) --  V ~ (x, y)] V In ~ (x, g) + B (x, y) rot v (x, y)} G (xo, go, x, g) dx dg 
~s ~ 
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whe re  F e is the p a r t  of the b o u n d a r y  of the  r eg ion  c o r r e s p o n d i n g  to  the conduct ing  wal ls  while F i  is the s 
s a m e  for  the insula t ing wal l s ,  and S is the r eg ion  of  the  channe l  

{~2:~,  (xo, y o ) ~ S  
,q = n, (Xo, Yo) ~ F 

(Xo, y o ) ~ S U F  

Equat ion  (2.6) can  be r educed  to  an  in teg ra l  equat ion  r e l a t ive  to  ~V by  in tegra t ion  by p a r t s  us ing (2. D. 

Because  of  the d i scont inuous  boundary  condi t ions  the grad ien t  V~v can  have a s i ngu la r i t y  whose na ture  
is not known beforehand .  The r e s u l t s  of the a n a l y s i s  will  be c o r r e c t  in the s t r i c t  sense  if the p rodu c t  
V~v (V In or) G is in tegrab le ,  which is s a t i s f i ed  in a m a j o r i t y  of p r a c t i c a l  c a s e s .  

The d i s t r ibu t ion  of c u r r e n t  dens i ty  o v e r  the  channe l  c r o s s  sec t ion  is of the g r e a t e s t  p r a c t i c a l  in te res t .  
By de t e rmin ing  the g rad ien t  V 0 with r e s p e c t  to  x 0 and Y0 f r o m  the r i gh t  and left  s ides  of (2.6) and us ing  
(2.1) we obtain an in tegra l  equat ion r e l a t ive  to  the c u r r e n t  dens i ty  j (Jx, Jy) 

{ i [~  0c(x0, y0~) d , - - I { [ v ( ~ ) x B ( ~ ) l n }  j (Xo, ~,o) = ~ (Xo, yo) v (Xo, yo) x n (xo, Yo) - -  ~ q~ (~) Vo oh 
F i 

fr v l x Q 
x V0G(z0, 

S 

which is equivalent  to a s y s t e m  of two in teg ra l  equa t ions  r e l a t ive  to the c o r r e s p o n d i n g  c o m p o n e n t s  Jx and 
Jy. 

The in teg ra l  equat ion  (2.7) has a s i ngu la r i t y  because  of  V0G 0. It c an  be shown tha t  th is  s ingu la r i t y  is 
weak  and (2.7) is an equat ion  of  the F r e d h o l m  type.  

The in teg ra l  r e p r e s e n t a t i o n  was  used  to ca l cu la t e  the t w o - d i m e n s i o n a l  c u r r e n t  d i s t r ibu t ion  in a long i -  
tudinal  c r o s s  sec t ion  of  the  end zone of  a channe l  and in a t r a n s v e r s e  c r o s s  sec t ion  of the  work ing  sec t ion  
of  the channel .  

The s y s t e m  of in teg ra l  equat ions  fo r  Jx and jy was  so lved  on an  e l ec t ron ic  c o m p u t e r  by  the method  of  
finite sums .  The r e m o v a l  of  the weak  s ingu la r i t y  in the  k e r n e l s  of  the in tegra l  equa t ions  was  done in a c -  
c o r d a n c e  with [12]. The s y s t e m  was  so lved  by the i t e ra t ion  method which showed good c o n v e r g e n c e .  Fo r  
example ,  a r e l a t ive  d i s c r e p a n c y  of  l e s s  than 10 -5 fo r  two s u c c e s s i v e  i t e r a t i ons  was  r e a c h e d  in s ix  to  eight  
runs .  

3. Cons t ruc t i on  of  G r e e n ' s  Func t ions .  In s tudying the edge e f fec t s  in long and wide M'HD channe l s  one 
can  neglec t  the mutual  effect  of the e n t r a n c e  and exit  o r  of the opposi te  side wal ls .  In th i s  c a s e  as  the 
canon ica l  r eg ion  it is conven ien t  to use a ha l f -band  with the insu la to r  at  the base  (Fig. 1, a). F o r  such a 
r eg ion  the G r e e n  funct ion is c o n s t r u c t e d  f r o m  the known Green  funct ion of  the Di r ich le t  p r o b l e m  fo r  a band 
by  a m i r r o r  r e f l ec t ion  of  th i s  funct ion r e l a t i ve  to the q ax is  and has  the f o r m  [10] 

1 [ch (p -- Po) -- cos (q -+- qo)] [ch (p ~ po) -- cos (q -~ qo)] 
G (Po, qo, P, q) = -Z  in [ch (p -- po) -- cos (q -- qo)] [ch (p + po) -- cos (q -- qo)] (3.1) 

At the bounda ry  of  the canon ica l  r eg ion  G sa t i s f i e s  the condi t ions  

G(po, qo, P, ~) = G (po, qo, p, 0) = OG (po, qo, O, q) / Op = 0  
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The Green function (3.1) can be used in the study of end effects in contoured MttD channels when the 
conducting channels have ei ther  nonconducting or  metallic walls separated f rom the e lec t rodes  by insulating 
inserts ,  as well as  in the study of t r ansve r se  edge effects in channels with conducting modules on the side 
walls (Fig. 1). 

The solution of the problem comes  down to a search  for  the function (3.2) 

W (x + iv) = p (x, y) + iq (x, y) (3.2) 

which accomplishes  the conformal  mapping of the region under considerat ion onto the half-band. 

After  determining the mapping function (3.2) one can obtain an analytical express ion for the contour 
integral  in (2.7) 

(3.3) 

which considerably  simplifies the calculations in analytical studies. 

In numerical  calculat ions of var ious  edge effects in the channels of MHD instruments  (see Fig. 1) the 
t ransi t ion f rom one channel studied to another is made by substituting into the calculation p rogram a unit 
which accomplishes  the conformal  mapping of the region {x, y} being considered onto the canonical  region 
{p,q}. 

4. Longitudinal Edge Effect in a Flat MHD Channel. The distribution of the electr ic  field was studied 
in a channel whose semiinfinite e lectrodes  are  separated f rom the conducting nozzle by an insulating in- 
ser t  of thickness 6 ; the half-height of the channel is taken as unity. The dimensionless  distributions of 
veloci ty  v {vx(Y,), 0, 0} and conductivity cr(y) were given in the form 

ch M -- ch My ch ~ ~ + t 
v x = M M c h M _ _ s h M  , ~--'~ ' (4.1) (,~ + t) (i + ~y*') 

Here M, ~1, and cr 2 are  constants  whose var iat ion makes it possible to give different profi les  of v x 
and ~. 

The use of Eqs. (4.1) cor responds  to the fact that the velocity and e lec t r ica l  res i s tance  of the working 
substance averaged over  the channel c r o s s  section are  constant  in the direct ion of the y axis 

1 1 

0 0 

The external  magnetic field was assumed to be a one-component  field and to be directed perpendicular  
to the plane of flow. The dimensionless  distribution of the magnetic field at the entrance to the MHD channel 
was given as  uniform in the interelectrode zone (B = l  for  x >-- 0) and as exponentially attenuated outside it 
(B=exp (~x) for x < 0). Such an approximation of B at the entrance to an lVIHD channel has been discussed 
in detail in [13, 14]. 
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The mapping of this region onto the half-band was accomplished by the function 

W (z) = Arch [2 (t + e '~z) ] (! --  e-~) --  1] 

A squaring t rapezoidal  equation in the region of Ix[ <3 and a squaring Hermite  equation in the region 
of Ix[ > 3 were used for the convers ion to finite sums in the integral  equations. It was assumed that when 
Ix[ > 3 the distributions j (Jx, Jy) are  known and coincide with the asymptot ic  distributions 

j~=0 ,  j r - - - - t - - %  for x-+~o 
j~=0 ,  j y=B(x )  for x - ~ - - o c  

As the calculat ions showed, this assumption is real ized with an accuracy  of ~ 1%. 

The calculat ions were conducted for grids of 50 and 80 nodes and gave prac t ica l ly  identical resul ts  
(the local differences of the two respect ive  solutions did not exceed 1.5%). 

In determining the total cu r ren t  of the channel the integration of ]n was ca r r i ed  out not over  the edge 
of the electrode where there  are  singular points (in-~ ~o) but over  a contour near the edge which does not 
contain points of discontinuity (the contour  abed in Fig. la). 

The resu l t s  of numerica l  calculat ions of the local and integral  cha rac t e r i s t i c s  of an MHD channel with 
6 =0.25 and @e=0.75 are  presented in Figs.  2-4. The values M = I ,  cr i=l ,  and cr2=3 were adopted, which 
cor responds  to c lose to a parabolic veloci ty  profile and to decrease  conductivity of the medium in the 
boundary layer .  

The distr ibutions of the ]x and ]y components of the cur ren t  density along the length of the channel 
for different values of y are  presented in Fig. 2. The dependence of B on x is plotted with a dashed line in 
Figs. 3 and 4. Curves  1 and 3 of Fig. 2 pertain to the distr ibutions of ix(X) and curves  2 and 4 to the d i s t r i -  
butions of ]y(X). Curves  1 and 2 co r respond  to y =0.05 and curves  3 and 4 to y =0.95. 

It is seen f rom the nature of the var ia t ion in the components of the cur ren t  density near  the channel 
axis (curves 1 and 2) and in the boundary-zone (curves 3 and 4) that with the drop in the magnetic field out- 
side the e lec t rodes  the end effect is manifested in the fo rm of leak cu r ren t s  to the metallic par ts  of the 
nozzle and an eddy cur ren t  at the entrance to the MHD channel. As the calculat ions showed, the size of the 
insulating inser t  and the magnetic field gradient exer t  the main effect on the end losses .  A decrease  in the 
conductivity in the boundary regions leads to an increase  in the intensity of the eddy cu r ren t  and a decrease  
in the leak cu r r en t s  along the insulating gap. For  a given flow rate in the channel the effect of the velocity 
profile on the intensity of the eddy cu r r en t  and the nature of the distr ibution of cur ren t  density in the MHD 
channel is re la t ively small.  

The electromagnet ic  cha rac t e r i s t i c s  of the MHD channel averaged over  the c r o s s  section are  of 
in teres t  for calculat ions of the integral  cha rac t e r i s t i c s  of MHD channels and the construct ion of canonical 
flOWS. 

Distributions over  the channel length of values,  averaged over a c r o s s  section x=cons t ,  of the r e -  
tarding force (j • B> and the e lec t r ica l  power ( j E )  , relat ive to ~0v0B02 and (70v02B02, respect ively,  are  
presented  in Figs. 3 and 4 for different functions of the drop in B. (Curves 1 co r respond  to ~ =0, curves  
2 to a = 5, curves  3 to a = ~o ; the dashed curve  shows the var ia t ion in B for c~ =5.) 
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It is seen that the influence of the edge effect on the cha rac t e r i s t i c s  of the MHD channel averaged over  
the c r o s s  section is exerted at a distance of ~ 0.25 d iameters  f rom the edge of the electrode.  In the res t  
of the electrode region the values of <j • B> and (j E> are close to the asymptotic values. A reduction in 
the conductivity in the boundary layer  leads to an increase  in the averaged retarding force near the e l ec -  
trode edges of the channel. This is explained by the decrease  in the leak cu r ren t s  and the increase  in the 

~intensity of the eddy current .  With a sharp drop in the magnetic field outside the e lect rodes  (a ~ ~) the 
re tardat ion of the flow in the electrode zone is intensified (curve 3 in Fig. 3). 

The extension of the field outside the l imits of the e lec t rodes  dec reases  the re tarding force in the 
electrode zone at the entrance to the MHD channel. In this case  the re tarding force increases  sharply due 
to the shor t -c i rcu i t ing  cu r ren t s  at the conducting walls of the nozzle, which leads to a general  increase  in 
the retardat ion of the flow at the entrance to the MttD channel. 

Besides the re tardat ion of the flow at the entrance,  the presence  of leak cu r ren t s  to the grounded e le-  
ments of the construct ion and the eddy cur ren t  cause a considerable  redistr ibut ion of energy in the entrance 
zone of the MHD channel (see curve 1 in Fig. 4). The supplying of energy to the s t r eam is observed in the 
zone of the nozzle and the insulating gap. 

The calculations show that the amount of energy supplied to the s t r eam increases  considerably  with an 
increase  in the steepness of the drop in the field outside the electrode zone. This is explained by the growth 
in the intensity of the eddy cur ren t  at the entrance to the MHD channel. With an increase  in a the maximum 
in the energy supplied shifts to the electrode.  In the initial section of the electrode zone of the channel the 
generated power averaged over  the c ros s  section can exceed the corresponding value in the cent ra l  zone. 

5. T ransve r se  Edge Effect in a Rectangular  MHD Channel. The distribution of the electr ic  field was 
studied in a t r ansve r se  c r o s s  section of a rectangular  M/ID channel with a modular  side wall (Fig. 1, b). 
The half-height of the channel is taken as equal to unity and the width of the insulating insert  is 6. The ex-  
ternal  magnetic field was assumed to be uniform and paral le l  to the electrodes,  and the distr ibutions of 
veloci ty and conductivity in the interelectrode gap were given as in P a r t  4. It is shown in [4] that in r e c -  
tangular  MHD channels with a relative electrode width L - 2 the mutual influence of the edge effects at the 
side walls can be neglected and a semiinfinite channel can be considered.  

The mapping of the initial semiinfinite region onto the canonical region was accomplished by the fnnc-  
tion 

W(z) = Arch [2 (cos zrz ~- 1) / (I --  cos ~6) -- 11 

The distributions of the Jx and jy components of the cur ren t  density over the height of the channel for 
different values of xwi th  5 =0.25, ~Ve=0.75, M = I ,  ( r l= l  , and 0"2=3 are  presented in Fig. 5. Curves  1 and 3 
pertain to the distributions of Jx(Y) and curves  2 and 4 to the distr ibutions of jy(y). Curves  1 and 2 c o r r e -  
spondto x = 0.25 and curves  3 and 4 to x=0.75.  

The distributions of cur ren t  density in the direction of the y axis near the side wall (curves 1 and 2) 
indicate the presence  of an intense connected eddy cur ren t  at the conducting module. A compar i son  of the 
data obtained with the resul ts  of a study of the t r ansve r se  edge effect with ~ =const  and v = c o n s t  made in 
[4] showed that with the means adopted for  making ~ dimensionless (4.1) the reduction in a in the electrode 
zone leads to a decrease  in the leak cu r ren t s  and an increase  In the intensity of the connected eddy current .  

The coefficient of reduction in the no-load voltage kx= qexx/v0B0h and the internal res i s tance  of the 
MHD channel Ri as functions of the relat ive fract ion of the insulating gap 6 for  different prof i les  of v x and 

are  given in Fig. 6. In determining k x and R i it was assumed that  the electrode width is equal to two. 
The solid lines per ta in  to the dependences of k x on 6 and the dashed lines to the dependences of Ri on 5. 
Curve 1 cor responds  to the calculation with (r =const  and M= ~ (Vx=COnSt); 2) (r =coast ,  M=10 (turbulent 
profile); 3) ~ = coast ,  M=0 (Poiseuille profile); 4) cr = v a t  ((r I =1, ~2 =3), M=0; 5, 6) calculated dependences 
of R i on 6 for ~ =coast  and cr = v a t  (~l--1, cr 2 =3). Because of the quasi l inear  nature of the problem, the  
internal res is tance  of the MHD channel does not depend on the veloci ty distribution and is determined by the 
channel geometry  and the profile of the conductivity a (x, y) [2]. It is seen that for  turbulent flow of the 
medium with constant conductivity the coefficient of reduction in the no-load voltage pract icaUy coincides 
with k x for flow with Vx= const (the difference is 1-2%). The lat ter  makes it possible to calculate the no- 
load voltage of an MHD channel with turbulent flow of the working substance f rom the analytical dependen- 
ces  of [4]. 
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F o r  Poiseui l le  flow (curve 3) the di f ference of k x f r o m  the no- load vol tage of the MHD channel  with Vx = 
coas t  is s ignificant  and r eaches  15% for  6 =0.25. Allowance for  the heterogenei ty  in the dis t r ibut ion of u 
(curve 4) leads to an inc rease  in k x c o m p a r e d  with cu rve  3 (u =coas t  and M =0). This  is explained by the 
dec r ea se  in leak c u r r e n t s  along the insulat ing gap with a reduct ion in u in the e lec t rode  zone. 

Curves  5 and 6 in Fig. 6 show that  with a dec r ea se  in the re la t ive  f rac t ion  of the insulat ing gap at the 
side wall  the internal  r e s i s t a n c e  of the MHD channel  d e c r e a s e s ,  which is explained by the i nc rea se  in the 
shunting effect  of the conducting module.  A c o m p a r i s o n  of the c u r v e s  with u =coas t  and u = v a r  shows the 
weak dependence of the to ta l  internal  r e s i s t a n c e  of the MHD channel on the prof i le  of the conductivi ty u when 
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the condition I ~-ldY ---- I is sa t is f ied.  
0 

The examples  cons ide red  show the poss ib i l i ty  of applying in tegra l  methods to the ca lcula t ion of c o m -  
pl icated e lec t r i c  f ie lds  desc r ibed  by anharmonle  potent ia ls  by using the appara tus  of Green  functions of the 
Laplace  equation. The in tegra l  method can be applied to file study of edge effects  in va r ious  MHD channels  
with c u r v i l i n e a r  walls  when the region of the channel admi t s  the conformal  mapping onto a canonical  ha l f -  
band. The r e su l t s  obtained can be cons ide red  as  s t r i c t  in the sense  that  thanks to the uniqueness of the so lu-  
t ions of in tegra l  F redho lm equations they can  a lways  be suff icient ly approx imated  to exact  solutions with the 
help of a compute r .  The development  of the method is postula ted on the poss ib i l i ty  in pr inc ip le  of its use 
for  p r o b l e m s  with R m - 1 and fl >- 1 and with e l ec t rodes  of finite d imensions .  In the l a t t e r  case  two Green  
functions a r e  cons t ruc ted  for  the co r respond ing  boundary  zones with subsequent matching of the solutions.  

In conclusion the authors  thank L. A. Vulis,* A. V. Gubarev,  and A. L. Genkin for  d i scuss ion  of the 
formula t ion  of the p rob lem and the r e s u l t s  of the work. 
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